Линии магнитной индукции
Содержание
С помощью классического компаса можно практически определить направление силового вектора в любой точке линии магнитной индукции. В этой публикации рассмотрены теоретические знания по заданной теме и рекомендации для решения практических задач.
Источники магнитного поля
Приведенный выше эксперимент наглядно демонстрирует, как любой человек может определить направление силовых линий магнитного поля Земли. Стрелка прибора покажет направления на южный и северный полюс. Продольная ось этого индикатора будет совпадать с вектором (В).
Электромагнитное поле проводника
Если аналогичный опыт выполнить около проводника с током, по движению стрелки можно определить круговое расположение силовых линий. Они образуют замкнутые кольца, перпендикулярные осевой линии кабеля.
Электромагнитная индукция
Достаточно сильное поле образует индукционная катушка. Практический пример – соленоид реле или запорного устройства. При включении такой узел втягивает внутрь металлический сердечник.
Что такое электромагнитная индукция
Это явление сопровождается возникновением поля в определенной среде, тока – в проводящем материале или поляризации отдельных предметов. Электромагнитная индукция зависит от изменения магнитных параметров со временем или соответствующего перемещения функциональных компонентов.
Установлена точная дата данного открытия – 29.08.1831 г. Известен автор – М. Фарадей. Ученый выявил пропорциональную зависимость ЭДС в замкнутом контуре от скорости, с которой изменяется магнитный поток.
Законы Ленца и Фарадея
Закон Фарадея показывает математическое соотношение важнейших параметров этого явления:
E = — dФ/dt,
где:
- Е – ЭДС;
- Ф – поток, образованный проникающим через ограниченный контур вектором магнитной индукции;
- t – время.
В этом выражении «-» перед основной частью обозначает правило, сформулированное Э. Ленцем. Этот российский ученый установил, что ток в рассматриваемом контуре создает направленность поля, противоположную силовой компоненте магнитного потока.
Для практического применения удобнее выразить отмеченные выше закономерности следующим образом:
Е = -N*(dФв/dt).
В этом примере представлена индукционная катушка, помещенная в магнитное (переменное) поле. Дополнительные компоненты:
- N – количество витков соленоида;
- Фв – поток через единичный виток.
В дифференциальном представлении этот закон описывают интегралом по произвольной поверхности от вектора магнитной индукции, который пронизывает область с определенными границами. Подобная форма позволяет учесть только изменения поля. Магнитным потоком называют совокупность линий, которые проходят через определенную площадку. Для упрощения расчетов полагают, что поле является однородным.
Правило правой руки для магнитных и электрических сил
Если проводник перемещается в постоянном магнитном поле, в нем образуется движение заряженных частиц. Для уточнения основных параметров явления не нужны расчеты и эксперименты. Достаточно запомнить простую технологию, изображенную на следующем рисунке.
При таком расположении постоянного магнита перемещают проводник снизу вверх в сторону, куда указывает поднятый большой палец. Ладонь поворачивают в сторону северного полюса. Четыре сомкнутых пальца покажут направление движения индукционного тока.
Сведения о линиях магнитной индукции
Из приведенных данных понятна силовая природа поля, созданного переменным током или перемещением проводника. Векторное выражение используют для точного выражения воздействий на индикаторный элемент. В начале публикации таким компонентом была стрелка компаса. Далее показана возможность применения проводящей рамки с током.
Линии индукции магнитного поля применяют для наглядного изображения данного явления. Если в любой точке такой кривой нарисовать вектор (В) по касательной, он укажет направление воздействия. Размером в масштабе показывают определенную силу.
Элементарной проверкой геометрических параметров можно установить уникальность каждого вектора. Они, как и линии силового поля, не пересекаются. Ниже представлены способы для уточнения распределения энергетических потоков в проводнике и окружающем пространстве.
Для варианта с прямолинейным проводником правую руку сжимают, как показано на первом рисунке. Большой палец направляют в сторону движения тока. Сжатые пальцы покажут направление силовых линий. Вторая часть картинки демонстрирует определение параметров поля при пропускании тока через кольцевую рамку – «правило буравчика». Вращение этого инструмента аналогично направлению тока.
Изображение линий магнитной индукции
Чтобы наглядно изучить распределение поля в пространстве, уменьшают размеры измерительных элементов. Для эксперимента подойдут железные опилки, равномерно рассыпанные на поверхности картонного листа или другой электрически нейтральной плоскости.
Если поднести с обратной стороны магнит, металлические частицы, как миниатюрные стрелки компаса, распределяться вдоль силовых полос. По расстоянию между ними можно судить об энергетических параметрах поля в определенном месте. Аналогичным образом создают рисунок. Большая густота (около полюсов) свидетельствует об увеличенном значении индукции.
Представленные знания применяют для решения разных инженерных задач. В частности, пригодятся простые правила определения направления тока в проводнике и стороны, в которую перемещается сердечник соленоида.