Каталог огранизаций по электромонтажу и электролабораторий:
Москва
Санкт-Петербург

Трехфазный ток

В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.

Трёхфазный ток
Трёхфазный ток

Трехфазная система переменного тока

Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).

Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.

Четырёхпроводная схема питания
Четырёхпроводная схема питания

Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.

Что такое трехфазный ток

Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

Общая формула мощности переменного тока:

P = I*U*cosϕ,

где:

  • P – мощность, (Вт);
  • I – ток, (А);
  • U – напряжение, (В);
  • cosϕ – коэффициент мощности.

Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

График трёхфазного тока
График трёхфазного тока

Почему используют трехфазный ток

Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.

Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:

  • экономичное транспортирование энергии на дальние расстояния без снижения параметров;
  • 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
  • возможность обеспечить сбалансированность энергосистемы;
  • одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).

К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.

Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.

На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.

Трёхфазная линия электропередач 10 кВ
Трёхфазная линия электропередач 10 кВ

Как осуществляется работа генератора

Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.

Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.

Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.

Генераторы, вырабатывающие трехфазное напряжение, могут иметь:

  • неподвижные магниты и подвижный (вращающийся) якорь;
  • неподвижный статор и магнитные полюса, которые вращаются.

В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).

Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.

Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.

Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.

На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.

Существует несколько способов возбуждения генераторов, а именно:

  • независимый – с помощью аккумулятора;
  • от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
  • благодаря самовозбуждению – собственным выпрямленным током.

Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.

 Трёхфазный генератор переменного тока
Трёхфазный генератор переменного тока

Схемы трехфазных цепей

Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

  • звезда;
  • треугольник.

Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

 Соединение перемычками обмоток
Соединение перемычками обмоток

Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

  • присоединение «звезда – звезда» с использованием нулевого проводника;
  • подключение «звезда – звезда» без использования нулевого провода;
  • подсоединение «звезда – треугольник»;
  • схема «треугольник – треугольник»;
  • соединение «треугольник – звезда».

Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.

Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

Соединения на борно двигателя
Соединения на борно двигателя

Соединение звездой

Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

 Схема соединения обмоток «звездой»
Схема соединения обмоток «звездой»

Соединение треугольником

При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

  • конец «А» – с началом «В»;
  • конец «В» – с началом «С»;
  • конец «С» – с началом «А».

Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

Iл = √3*Iф.

Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

  • достигается увеличение мощности в 1,5 раза;
  • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
  • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

Включение обмоток по схеме «треугольник»
Включение обмоток по схеме «треугольник»

При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

  • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
  • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.

Мощность тока при схеме «звезда» определяется по формуле:

P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

где:

  • Uф – фазное напряжение;
  • Uл – линейное напряжение;
  • Iф – фазный ток;
  • Iл – линейный ток;
  • cosϕ – сдвиг фаз.

Мощность тока при схеме «треугольник» вычисляется по формуле:

P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.

Соединения в трёхфазной цепи
Соединения в трёхфазной цепи

Фазное и линейное напряжение в трехфазных цепях

Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.

асположение векторов напряжений на диаграмме
асположение векторов напряжений на диаграмме

Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:

Uл = 2*Ua*sin600.

Так как sin600= √3/2, то формула принимает вид:

Uл = √3*Ua = 1,73*Ua.

Значит, Uл = 1,73*Uф

При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.

Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.

Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.

Отличия от однофазного тока

Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.

Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:

  • линейное напряжение не рассчитано на питание однофазных потребителей;
  • величина мощности нагрузки зависит от сечения питающего кабеля;
  • возможность включения в сеть трёхфазных потребителей;
  • допустимость переключения однофазного потребителя на другую фазу.

В связи с этим использование трёхфазного тока более эффективно на производстве.

Распределение электроэнергии
Распределение электроэнергии

Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.

Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.

Видео