Плотность энергии магнитного поля

Одной из характеристик магнитного излучения, показывающей распределение его энергии в объеме пространства, является плотность энергии магнитного поля. При изучении электромагнетизма необходимо усвоить, что это за величина, что она характеризует и как измеряется.

Катушка или дроссель генерирует вокруг себя магнитное поле

Катушка или дроссель генерирует вокруг себя магнитное поле

Объемная плотность магнитной энергии

Формула нахождения объемной плотности энергии имеет такой вид:

ω=W/V.

Под ω здесь подразумевается собственно искомая плотность, под W – энергия имеющегося поля, под V – объем пространства, в котором поле проявляет активность. Если выразить значение W через магнитную проницаемость µ и индукцию В и подставить в формулу, она приобретет следующий вид:

ω=В2/2* µ0* µ (здесь µ0 – это магнитная постоянная).

Преобразование с использованием вектора индукции применяется, чтобы исключить привязку активного магнитного поля к особенностям дросселя. Формула для вычисления индукционной характеристики выглядит так:

B= µ0* µ*I*n.

I здесь – токовая сила в катушечной цепочке, через n выражается такая величина, как плотность обмотки. Она равна частному количества витков в соленоидной обмотке и длины фрагмента, на котором размещены витки. Тогда формула для W:

W= В2*V/2* µ0* µ.

Подставив выражение в основную формулу плотности, можно привести его к ранее обозначенному виду.

Наличие магнитного поля вокруг проводника или катушки с током

При подключении соленоида (катушки) в электрическую цепь вокруг нее формируется поле. Характеристики поля зависят от ряда параметров: от средовых особенностей окружения, токовой силы (она измеряется в амперах) и материала, из которого изготовлен проводник или обмотка катушки. В полевом пространстве могут образовываться электромагнитные волны. Так как на полевой энергетический потенциал, прежде всего, оказывает влияние сила текущего в системе электротока, можно сделать вывод, что работа тока по генерированию магнитного пространства будет эквивалентной энергии последнего. Если в систему подключена катушка с магнитным сердечником, то на энергетическую плотность будет влиять полевая энергия в вакууме и в материале, из которого сделан сердечниковый элемент.

Подключение индуктивной катушки к источнику тока

Подключение индуктивной катушки к источнику тока

Для изучения динамики явления можно рассмотреть электроцепь, включающую в себя дроссель, лампу, замыкающий ключ и источник постоянного электротока. Когда ключик замыкается, токовый путь будет идти от «положительного» зажима источника через лампу и индуктивную катушку. Поначалу лампа накаливания загорится ярче, что связано со значительной величиной сопротивления дроссели. По мере того, как сопротивление будет падать, а проходящий через обмотку ток увеличиваться, интенсивность горения лампочки будет понижаться. Связано это с тем, что первое время подаваемый на дроссель ток имеет значение, пропорциональное току высокой частоты.

Чтобы практически построить цепь, подходящую для расчета, нужно, чтобы энергетический ресурс источника питания затрачивался на генерирование магнитного поля. Поэтому параметрами внутреннего сопротивления дроссели и питательного источника допустимо пренебрегать.

Важно! Согласно второму закону Кирхгофа, сумма подсоединенных к электрической цепи напряжений равняется сумме снижений напряжения для всех компонентов цепочки.

Второй закон Кирхгофа

Второй закон Кирхгофа

Измерение плотности энергии магнитных полей

Данная величина показывает энергию, содержащуюся в единице объема окружающей среды, подпадающей под влияние поля. Обозначается она греческой буквой ω. Для вычисления применяется формула:

ω=W/V, в данном случае W – это полевая энергия в объеме пространства V.

Единица измерения плотности поля в международной системе СИ тоже выглядит как частное единиц, в которых измеряются эти величины: джоулей и кубических метров (Дж/м3). Показатель для аккумуляторов (ионных, свинцово-кислотных и других) указывают в прилагающейся документации.

Для соленоида, подсоединенного в электрическую цепь, оба составляющих этого частного можно выразить через следующие единицы:

  1. Значение энергетического ресурса поля будет равным уполовиненному произведению индуктивности соленоида на квадрат токовой силы в его обмотке:

W=L*I2/2.

  1. В качестве «пространства» рассматривается сама катушка, тогда V=S*l, где S – площадь сечения катушечного элемента в поперечнике, а l – его длина.

Тогда конечная формула принимает следующий облик:

ω=L*I2/2*S*l.

Формула индуктивного сопротивления катушки

Вычислить величину сопротивления дросселя XL можно, воспользовавшись следующей формулой:

XL=2πfL.

Здесь буква L обозначает параметр индуктивности дроссели, а f – токовую частоту. Исходя из этого выражения, поначалу попадающий на обмотку ток будет пропорциональным электротоку большой чистоты. В это время дроссель проявляет поведение, аналогичное ситуации цепного разрыва, с сильным повышением индуктивного сопротивления. С течением времени последнее падает до нулевого значения.

Вмонтированная в лампу нитка отличается высоким показателем сопротивления, тогда как активный показатель обмотки, напротив, стремится к нулю. Из-за этого возникает ситуация, когда почти весь цепной ток проходит через дроссель. Когда цепь размыкают при помощи ключа, лампа не затухает постепенно. Напротив, она сначала резко начинает гореть интенсивно, потом – медленно угасать. Чтобы лампа горела, требуется энергетический ресурс. Он поступает из магнитного поля, генерируемого индуктивной катушкой. Таким образом, дроссель проявляет себя источником самоиндукции.

В рассмотренном примере катушка с обмотками, подключенная в цепь, выступает как источник магнитного поля. Поскольку в такой ситуации это поле не является однородным, для выполнения расчетов необходимо использование показателя, характеризующего концентрацию и распределение энергии в поле. Можно заключить, что смысл введения параметра плотности поля состоит именно в этом.

Видео