Блок питания из энергосберегающих ламп
Содержание
Хорошо известные большинству пользователей энергосберегающие лампы, несмотря на свою популярность, довольно быстро приходят в негодность и обычно не поддаются окончательному восстановлению. Однако если в них перегорает всего лишь один светильник, а питающая его схема ЭПРА остаётся в относительной целостности, она может использоваться в качестве самостоятельного блока питания (смотрите фото).
Искусственное «продление жизни» энергосберегающих изделий, у которых сгорел только один осветитель, позволяет получить дешёвый и сравнительно мощный ИБП, выходное напряжение которого может выбираться произвольно.
Устройство и принцип работы
Выпускаемые отечественной промышленностью энергосберегающие лампы, а также широко распространенные китайские их аналоги имеют схожую электронную схему (ЭПРА), работающую по принципу импульсного преобразования. Такое устройство энергосберегающей лампы обеспечивает ей следующие очевидные преимущества:
- Входящая в энергосберегающие лампы электронная начинка гарантирует высокую нагрузочную способность изделия, работающего в режиме длительного (непрерывного) свечения;
- Эффективность использования сетевого напряжения (КПД) в этом случае существенно повышается;
- Встроенная схема энергосберегающей лампы позволяет получить компактное и лёгкое изделие (за счёт отсутствия громоздкого и тяжёлого трансформатора).
Суть работы устройства ЭПРА (так называемого балласта) достаточно проста и состоит в следующем:
- Сначала напряжение 220 Вольт преобразуется в выпрямительном модуле в постоянный потенциал примерно той же величины;
- Затем в электронной схеме под воздействием выпрямленного напряжения формируется последовательность высоковольтных импульсов частотой от 20 до 40 кГц (точное значение зависит от конкретной модели изделия);
- На завершающем этапе преобразования электрические импульсы выпрямляются (сглаживаются) выходным дросселем, а получившееся после этого высокое напряжение подаётся непосредственно на осветительную лампу.
Для лучшего понимания принципа, согласно которому работают энергосберегающие лампы, потребуется более тщательное рассмотрение используемой в них электронной схемы.
Схема ЭПРА
Принципиальный подход к повторному применению энергосберегающего изделия предполагает использование ещё не сгоревшей электронной платы в качестве импульсного источника питания.
Для понимания того, как работают энергосберегающие лампы, потребуется разобраться с их электронной схемой (смотрите рисунок ниже).
Рабочая схема электронного балласта включает в свой состав следующие обязательные элементы:
- Выпрямительный узел на диодах VD1-VD4, на который сетевое напряжение подаётся через дополнительный ограничивающий резистор R0;
- Высоковольтный фильтрующий конденсатор (С0) и сглаживающий фильтр (L0);
- Специальный транзисторный преобразователь, обеспечивающий формирование рабочих импульсов эсл (эта схема содержит целый ряд электронных деталей, облегчающих автозапуск колебаний частотой 20 кГц).
Диоды VD7 и VD6 выполняют защитную функцию, а трансформаторы TV1-1 и TV1-2 образуют цепи обратной связи, повышающей устойчивость процесса генерации. Красным цветом на рисунке, где изображена лампа (точнее её схема) выделен набор деталей, которые должны быть удалены при доработке электронного блока.
Особенности доработки электронного модуля
Выбор по мощности
Перед тем, как сделать блок питания из энергосберегающей лампы, в первую очередь, нужно будет определиться с той мощностью, которая потребуется от него в каждом конкретном случае. От этого параметра будет зависеть степень модернизации электронной части, обеспечивающая возможность нормальной эксплуатации подключаемого к ней оборудования.
Так, при небольшой рабочей мощности будущего блока питания переделка ЭПРА затронет лишь малую часть всей схемы (смотрите рисунок).
Если же предполагается сделать импульсный блок питания из энергосберегающей лампы, рассчитанный на значительные нагрузки (чтобы подключать импульсный паяльник, например), его нагрузочную характеристику необходимо увеличить. Для этого потребуется существенная доработка схемы ЭПРА в расчёте на выходную мощность более 50-ти Ватт.
Для расчета этого параметра следует вспомнить, что он определяется как произведение выходного тока на рабочее напряжение. То есть, если 50-ти ваттный импульсный паяльник рассчитан на напряжение 25 Вольт, то самодельный блок питания должен обеспечивать выходной ток не менее 2-х Ампер (модернизированная схема приводится ниже).
Помимо паяльника, от такого импульсного блока питания может работать любая низковольтная лампа средней мощности.
Какие детали потребуются
На доработанной схеме №1 новые детали выделены красным цветом и обозначают следующие элементы:
- Диодный мост VD14-VD17;
- Два конденсатора (простой и электролитический) С9 и С10;
- Намотанная на балластном дросселе L5 дополнительная обмотка, число витков которой подбирается экспериментально.
Разберёмся с тем, что можно сделать, чтобы обезопасить выход БП от перегрузок за счёт правильного выбора числа витков выходной катушки.
Выбор параметров выходной катушки
Для вычисления нужного количество витков в съёмной обмотке L5 необходимо немного поэкспериментировать, то есть поступить следующим образом:
- Сначала поверх имеющейся катушки нужно намотать порядка 10-ти витков любого провода в изоляции;
- Затем следует нагрузить намотанную часть на реостат с сопротивлением 5-6 Ом и мощностью порядка 30 Ватт (для его подсоединения может использоваться метод пайки);
- В результате получают конструкцию, изображённую на рисунке ниже;
- После этого схему включают в сеть, а затем посредством тестера замеряют напряжение на реостате;
- Полученное значение в вольтах делится на намотанное ранее число витков, в результате чего получается цифра, соответствующая удельному вольтажу на 1 виток.
В завершении эксперимента определяют требуемое количество витков, необходимых для получения заданного выходного напряжения путём деления его величины на полученный ранее результат.
Конструктивное исполнение обмотки
При доработке выходной катушки всегда нужно помнить о том, что первичная обмотка находится под высоким напряжением. Поэтому все её конструктивные изменения должны осуществляться только на отключенном от сети преобразовательном устройстве.
Обмотка по варианту исполнения №1
При намотке дополнительных витков на уже имеющийся в ЭПРА дроссель не следует забывать про межобмоточную изоляцию, которая обязательна для проводов типа ПЭЛ (в тонкой эмалевой изоляции).
В качестве такой изоляции, наматываемой в несколько слоёв, следует применять специальную ленту из политетрафторэтилена, нередко используемую для уплотнения резьбовых соединений.
Готовая обмотка нагружается на диодный мостик, выпрямленное напряжение с которого поступает на нагрузку (это может быть обычная низковольтная лампочка, например). Выходная мощность в выполненном по этой схеме блоке питания обычно ограничивается размерами используемого трансформатора и допустимыми токами коммутируемого устройства на транзисторах TV1 и TV2.
Обмотка по варианту исполнения №2
Для получения блока питания большей мощности, к которому можно будет подключать импульсный паяльник, например, потребуется более сложная доработка (смотрите схему на приведённом ниже рисунке).
В состав дорабатываемой части схемы, выделенной на рисунке красным цветом, входят следующие элементы:
- Дополнительный трансформатор TV2 с тремя обмотками (для его изготовления удобнее всего воспользоваться ферритовым кольцом с соответствующей магнитной проводимостью);
- Два полупроводниковых выпрямляющих диода VD14 и VD15;
- Сглаживающие конденсаторы C9 и C10 достаточной ёмкости.
Помимо этого обязательно нужно будет заменить коммутирующие транзисторы TV1 и TV2 на более мощные образцы с одновременной их установкой на охлаждающие радиаторы.
В результате проведённой модернизации частично сгоревшая энергоэффективная лампа превращается в достаточно мощный блок питания (до 100 Ватт). При этом его выходное напряжение может принимать значения от 12-ти Вольт и выше при рабочем токе в нагрузке до 8-9 Ампер. Указанных параметров переделанного из сгоревшей лампы устройства вполне может хватить для питания простейшего шуруповерта, например.
В заключение отметим, что для того, чтобы использовать перегоревшую энергосберегающую лампу для самостоятельного изготовления импульсного блока питания (ибп), нужны определённые навыки обращения с электрическим паяльником. Помимо этого, потребуется умение разбираться с электронными схемами хотя бы на уровне понимания материала, приводимого в данном обзоре.